Rosh Sunder (ASDA)
Research Supervision Workshop
12 April 2013

http://cdn.yeeyan.org/upload/attached/2010-12/07/20101207101204_30173.jpg
PLAGIARISM

• “Literary Theft”
• Boundary between plagiarism and research is often unclear
• Occurs among students – variety of specific reasons
• 3 root motivations (Jason Stephens, educational psychologist)
 – under pressure
 – Under-interested
 – Unable to write effectively
• plagiarismdotORG - http://plagiarism.org/

#1. CLONE
Submitting another’s work, word-for-word, as one’s own

#2. CTRL-C
Contains significant portions of text from a single source without alterations

#3. FIND - REPLACE
Changing key words and phrases but retaining the essential content of the source

#4. REMIX
Paraphrases from multiple sources, made to fit together

#5. RECYCLE
Borrows generously from the writer's previous work without citation

#6. HYBRID
Combines perfectly cited sources with copied passages without citation

#7. MASHUP
Mixes copied material from multiple sources

#8. 404 ERROR
Includes citations to non-existent or inaccurate information about sources

#9. AGGREGATOR
Includes proper citation to sources but the paper contains almost no original work

#10. RE-TWEET
Includes proper citation, but relies too closely on the text’s original wording and/or structure
Global leader in plagiarism prevention and online grading
Webcasts

• Pedagogic conversations about educating our students
• How to... videos and resources
• White Papers
• Research

http://www.turnitin.com/en_us/resources/webcasts
To create a class, enter a class name and a class enrollment password. Click submit to add the class to your homepage. For TA's, enter a TA join password.

Create a New Class

Class type
- Standard class

Class name

Enrollment password

Class start date 10-Apr-2013

Class end date
- 12-Oct-2013
Durban University of Technology

<table>
<thead>
<tr>
<th>Class ID</th>
<th>Class name</th>
<th>Status</th>
<th>Statistics</th>
<th>Edit</th>
<th>Copy</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>5443637</td>
<td>1st years</td>
<td>Expired</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6260952</td>
<td>2013 Radiographic Practice IV - D, NM, T, US</td>
<td>Active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6260958</td>
<td>2013 Research Supervision</td>
<td>Active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5499604</td>
<td>Demo</td>
<td>Expired</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4251993</td>
<td>Radiographic Pathology II</td>
<td>Expired</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4252008</td>
<td>Radiographic Practice IV</td>
<td>Expired</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4252028</td>
<td>Research Supervision</td>
<td>Expired</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
About this page

This is your class homepage. Click the new assignment button to add an assignment to your class homepage. Click an assignment’s "View" button to view the assignment inbox and any submissions that have been made to the assignment. You can submit papers by clicking on the "Submit paper" option in the assignment's "More actions" menu.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>START</th>
<th>DUE</th>
<th>POST</th>
<th>STATUS</th>
<th>ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poster Presentation Final Draft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAPER</td>
<td>16-May-2012</td>
<td>03-Jun-2012</td>
<td>03-Jun-2012</td>
<td>9 / 23</td>
<td>View</td>
</tr>
<tr>
<td></td>
<td>3:50PM</td>
<td>11:59PM</td>
<td>11:59PM</td>
<td></td>
<td>More actions</td>
</tr>
<tr>
<td>Revision 1</td>
<td>30-May-2012</td>
<td>06-Jun-2012</td>
<td>07-Jun-2012</td>
<td>2 / 23</td>
<td>View</td>
</tr>
<tr>
<td>Poster Presentation Final Draft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REVISION</td>
<td>9:12AM</td>
<td>11:59PM</td>
<td>12:00AM</td>
<td></td>
<td>View</td>
</tr>
<tr>
<td>Case Study Draft Submission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2:09PM</td>
<td>11:59PM</td>
<td>12:00AM</td>
<td></td>
<td>More actions</td>
</tr>
<tr>
<td>Revision 1</td>
<td>13-Aug-2012</td>
<td>24-Aug-2012</td>
<td>24-Aug-2012</td>
<td>12 / 23</td>
<td>View</td>
</tr>
<tr>
<td>Case Study FINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Originality Check

• Checks submissions to ensure original work
 – 24+ billion web pages
 – 300+ million student papers
 – leading library databases & publications.

• Shows student’s original text

• Matched sources are colour coded

• Settings – can exclude references/bibliography & small matches

• Similarity report verifies what is original and what isn’t
Poster Presentation Final Draft

INBOX | NOW VIEWING: NEW PAPERS ▼

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Similarity</th>
<th>Grade</th>
<th>Response</th>
<th>File</th>
<th>Paper ID</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davenhill, Sheryl</td>
<td>Poster presentation</td>
<td>4%</td>
<td></td>
<td></td>
<td></td>
<td>251683548</td>
<td>26-May-2012</td>
</tr>
<tr>
<td>Naidoo, Meressa</td>
<td>draft of poster</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td>250139677</td>
<td>17-May-2012</td>
</tr>
<tr>
<td>Govindsami, Keshini</td>
<td>Final Poster</td>
<td>9%</td>
<td></td>
<td></td>
<td></td>
<td>249854022</td>
<td>21-May-2012</td>
</tr>
<tr>
<td>Krohne, Cristina</td>
<td>Final Poster 3D</td>
<td>12%</td>
<td></td>
<td></td>
<td></td>
<td>252311640</td>
<td>30-May-2012</td>
</tr>
<tr>
<td>Pillay, Athena</td>
<td>Poster</td>
<td>13%</td>
<td></td>
<td></td>
<td></td>
<td>250402258</td>
<td>19-May-2012</td>
</tr>
<tr>
<td>Maharaj, Revasha</td>
<td>poster presentation</td>
<td>15%</td>
<td></td>
<td></td>
<td></td>
<td>250346823</td>
<td>18-May-2012</td>
</tr>
<tr>
<td>Baatjes, Ancelyn</td>
<td>Poster Presentation</td>
<td>16%</td>
<td></td>
<td></td>
<td></td>
<td>250123472</td>
<td>17-May-2012</td>
</tr>
<tr>
<td>Chetty, Seshree</td>
<td>poster improved</td>
<td>22%</td>
<td></td>
<td></td>
<td></td>
<td>249860529</td>
<td>16-May-2012</td>
</tr>
<tr>
<td>O'Reilly, Robert</td>
<td>3D Echocardiography of Epstein's anomaly</td>
<td>29%</td>
<td></td>
<td></td>
<td></td>
<td>250407855</td>
<td>19-May-2012</td>
</tr>
<tr>
<td>Dicks, Jadyn L</td>
<td>-- no submission --</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Govender, Rohini</td>
<td>-- no submission --</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadebe, Bonani</td>
<td>-- no submission --</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Assignment</td>
<td>Title</td>
<td>Submitted</td>
<td>Originality</td>
<td>GradeMark</td>
<td>Download</td>
<td>Reviews</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Poster Presentation Final Draft</td>
<td>Poster presentation</td>
<td>26-May-2012</td>
<td>4%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1a</td>
<td>Revision 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>start: 16-May-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>due: 03-Jun-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>Revision 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>start: 30-May-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>due: 06-Jun-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Case Study Draft Submission</td>
<td>Case study - Ameloblastoma</td>
<td>11-Jun-2012</td>
<td>7%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>start: 10-Jun-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>due: 17-Jun-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>Revision 1</td>
<td>Ameloblastoma case study</td>
<td>15-Aug-2012</td>
<td>5%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>start: 13-Aug-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>due: 24-Aug-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Case Study FINAL</td>
<td>Ameloblastoma Case study</td>
<td>17-Aug-2012</td>
<td>0%</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>start: 17-Aug-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>due: 19-Aug-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Research Proposal and
Ratification of Research Proposal by the Higher Degrees Committee

Faculty: Faculty of Health Sciences
Department: Department of Radiography
Qualification registered for (e.g. MTech: Fashion) B-Tech: Radiography
Offering type: Full time registration
Yes
Prior qualification (e.g. B-Tech: Fashion) National diploma in Radiography (Diagnostic)

Student
Surname: Krohne
Student No.: 21139711
First Names: Cristina Rashieda
Title (Mr., Ms.): Ms
Postal Address: 91 Janiper road, Overport, Durban, 4001

Tel (W) Tel (H) Cell Fax E-Mail
--- --- --- --- ---
0736590942

Provisional title of Dissertation/Thesis
A cross-sectional investigation of the association between foetal growth and ethnicity in Black African and Indian pregnant women in eThekwini.

Purpose of the study
The purpose of the study is to investigate if there is an association between foetal growth and ethnicity. Currently South Africa is using foetal growth charts that is based on the European population. The proposed research would either validate the currently used charts or, if different, then foetal growth charts have to be customized based on the different South African ethnic groups. The main ethnic groups in Durban (eThekwini) are Zulu (Black Africans) and the Indian (Asians) - these will be the target groups. Foetal growth is very important, it gives an indication of foetal well being. If foetal growth is misinterpreted because of discrepancies in the foetal growth chart then this in turn can lead to unnecessary medical interventions. Differentiation in ethnicity growth patterns should be established to prevent a misdiagnosis of intrauterine growth restriction (IUGR) and small for gestational age (SGA) features. Therefore the purpose of this study is to investigate foetal growth in terms of ethnicity in order to improve clinical management of a pregnant woman in eThekwini.

Supervisor
Mrs. C. Swanson
Position: Present Qualifications

Tel (W) Tel (H) Cell Fax E-Mail
0732075108 / 07222694365 lyndas.dut.ac.za

Co-Supervisor
Position: Present Qualifications

Tel (W) Tel (H) Cell Fax E-Mail

Form PG 4a - 2011/2012 Updated 12/09/2011
3D Echocardiography of Epstein's anomaly

BY ROBERT O'REILLY

Abstract:

Transesophageal Realtime 3D echocardiography plays an important role in imaging congenital cardiac malformations. In this case a 13 year old African girl presents to the cardiology department for a transesophageal echocardiography where the diagnosis is Epstein's anomaly with an associated atrial septal defect. In this document we discuss the recent advances in image processing in terms of new piezoelectric materials and elements, steering of the beam formers, the third dimension and quantification techniques. In conjunction with post processing techniques the Multi-planer reformating, Virtual organ computer-aided analysis, Tomographic ultrasound imaging and inversion mode will be discussed. Finally the impact that all these advancements have on the imaging of Epstein's anomaly will be discussed. The simultaneous visualization of the three leaflets of the tricuspid valve delineating the morphology of the valve leaflets are indeed some of the many advantages that 3D imaging have over conventional 2D imaging.

Case Report:

A 13 year old, black female was presented with a history of congestive heart disease, an atrial septal defect of 2.8 cm with associated left to right shunt and an abnormal tricuspid valve with tricuspid regurgitation. On physical examination, the apex of the heart was displaced laterally, at the 5th intercostal space in the mid-clavicular line. The left ventricle was normal, the left atrium was mildly dilated, and the left ventricle was normal. The tricuspid valve annulus was 6 cm in diameter. The tricuspid valve area was 1.9 cm2. The left atrium and the left ventricle were normal. The left ventricle was normal. The left atrium was enlarged and measured 8 cm in diameter. The left atrium was slightly dilated. The left ventricle was normal. The left atrium was normal. The left ventricle was normal. The left atrium was slightly dilated.

Advancements in the Technology:

Advancements in image processing:

New piezoelectric materials: These are grown from a molybdenum selenide material which result in a more homogeneous crystal with fewer defects, no gain boundaries or lower losses and achieve a near perfect electrical alignment. These improve the efficiency of conversion of electrical to mechanical energy by 65% - 85%.

Piezoelectric elements: Each active element is electrically independent from other elements which results in thousands of elements that can steer a scan line from left to right up and down.

Steering of beam formers: Steering occurs in the azimuth and elevation planes by the ultrasound unit and is controlled by the use of a highly integrated circuits. This facilitates the creation of quantitative techniques in 3D. The entire structure is imaged completely and therefore decreases the possibility of foreshortening the geometric assumptions regarding shape.

Advancements in post processing:

Multi-planer reformating (MPR): permits the dynamic cardiac structures to be sliced into thin planes through the three dimensions. This technique displays thin 3D slices in an axial, sagittal and coronal plane which isn't possible in 2D imaging on the monitor simultaneously. MPR is useful in understanding the anatomy of the heart and differentiates true anatomic structures from artifacts and detects foreign bodies and quantification of regurgitant lesions or perforation (11).

Virtual organ computer-aided analysis (VOCAL): allows the Doppler to trace the region of interest in order to calculate the volume of the tissue that is under investigation. This technique improves an accuracy.

Impact on imaging:

Atrial septal defect occurs in 85%-94% of patients (3). 3D echo displays the size, shape, and free wall tissue surrounding the defect (8).

The simultaneous visualization of all leaflets using imaging 3D echo facilitates visualization of all the leaflets simultaneously during the entire cardiac cycle and separation of commissures.

The complex anatomy of the disease makes it very difficult to assess with 2D (2). 3D echo of the tricuspid and the mitral valve leaflets and the subvalvular apparatus (9) also allow the tricuspid valve leaflets to be visualized. The velocity measurement provides information on the severity of tricuspid regurgitation and functional right ventricle (2). Excellent correlation of this measurement to measurements of right ventricular volumes and function.

3D echo has the ability to record and analyze the normal anatomy and to compare it with abnormal anatomy in order to display complex spatial relationships more objectively and the analysis of a more quantifiable (2). It also reduces the subjective interpretation requirements.

3D echo has produced new insight into the mechanism of this disease and has improved the clinical and surgical management.

Discussion:

Epstein's anomaly is a true rare form of congenital heart disease occurring in 1 out of every 20,000 patients. In the past this echocardiography, but due to the recent improvement in technology, it has been made easier.

An increased amount of improved piezoelectric materials in multiple planes, improvements in the quantification of the 3D echocardiogram makes it easier.

In 2D imaging there are no post processing techniques to improve the visualization of structures in 3D. The structures can be visualized in the coronal and sagittal views of the tricuspid valve. In 3D imaging the leaflets of the tricuspid valve were not possible with 2D imaging. It also allows the cardiovascular disease to be visualized in 3D, which is difficult to perform with 2D imaging. The ability to visualize and display complex epicardial echocardiographic imaging which isn't possible on 2D imaging. Due to all these technological improvements it plays an important role in imaging Epstein's anomaly.
3D Echocardiography of Epstein's anomaly

By Robert O'Reilly

Case Report:

A 4-year-old child presented with recurrent episodes of heart failure and prosthetic valve regurgitation. On physical examination, the apex of the heart was displaced laterally, at the 6th right intercostal space. A 2D parasternal view revealed a dilated right ventricle with a large pericardial effusion. The 3D echocardiogram increased the diagnostic yield by demonstrating the coaptation defect between the right atrium and ventricle. Atrial septal defect (ASD) and a large patent foramen ovale (PFO) were also visualized. The patient was referred for surgical intervention.

Advancements in the Technology:

Quantitative techniques in 3D echocardiography have improved the accuracy of valve area measurement. These techniques allow for the analysis of valve morphology, leaflet coaptation, and regurgitant fraction. Virtual organ computer-aided analysis (VOCAL) technology facilitates the creation of 3D models of the heart, improving the visualization of complex anatomy.

Discussion:

Epstein's anomaly is a rare congenital heart defect that occurs in 1 out of every 20,000 patients. The diagnosis is typically made in the first year of life. The 3D echocardiography offers a more detailed understanding of the anatomy and function of the heart. The ability to visualize the coaptation defect and assess the leaflet morphology is crucial in planning surgical intervention.

Publication

Full Source View

Additional resources and references are available online. For more information, visit the official website of the American Society of Echocardiography.
3D Echocardiography of Epstein’s anomaly

BY ROBERT O’REILLY

Advancements in the Technology:

Quantitative techniques: In 3D, the entire structure is included and therefore decreases the possibility of foreshortening the geometric assumptions regarding shape (9).

Advancements in Post processing:

Multi-planar reformatting (MPR): permits the dynamic cardiac structures to be sliced into infinite planes through the three dimensions (11). This technique displays these 2D slices in an axial, sagittal, and coronal plane (which isn’t possible in 2D imaging on the monitor simultaneously (6)). MPR is most useful in understanding and studying cardiac morphology, it differentiates true anatomic structures from artifacts, aids in detect sizing and quantification of regurgitant lesions or paravalvular leaks (11).

Virtual organ computer-aided analysis (VOCAL): allows the sonographer to trace the region of interest in order to calculate the volume of the tissue that is under investigation (5). This technique produces an improved accuracy and sensitivity in comparison with 2D volume measurements (4).

Tomographic ultrasound imaging or TUI: volume images are displayed in multiple parallel slices. Similar to CT and MRI, the operator can choose the number of slices to be viewed (3).

In the intermode, the hypoechoic areas (myocardium) become hyperchoic and the less dense areas become (blood in ventricles) hyperechoic (3).

Publication

Hung, J. “3D Echocardiography: A Review of the Current Status and Future Development” (2010). Three-dimensional echocardiography, using both reconstruction methods and RT3D, has been used to detect several forms of congenital heart disease. The ability to record and analyze the entire cardiac structure and the ability to display complex spatial relationships are potential advantages of 3D imaging over 2D echocardiography. In addition, the decreased examination time afforded by RT3D echocardiography may reduce the need for sedation in some children. In patients with atrial septal defects, when not possible with 2D imaging, it also allows for better visualization of the complex anatomy of the disease and mechanics of valve regurgitation, which is very difficult to perform with 2D imaging. The ability to record and analyze the entire cardiac structure and also display complex spatial relationships is another benefit of 3D imaging, which is not possible on 2D imaging.

Due to all these technological improvements and benefits involved in 3D imaging, it plays an important role in imaging Epstein’s anomaly and grossly supersedes 2D imaging.

References:

Live Samples

- Go to Turnitin website: http://turnitin.com
 - 1st Years - 54% similarity report
 - Rad Prac IV 2012 – Group Project – 22%
GradeMark

• Allows for a more comprehensive evaluation.

• 5 types of “Rich Feedback”
 – originality report
 – quickmark sets,
 – voice comments
 – grading rubrics
 – general comments

• Live Sample – 2013 Rad Prac IV

http://www.turnitin.com/en_us/home
PeerMark

• “Students don't just learn from instructors they also learn from one another. PeerMark facilitates peer review so that students can evaluate each other's work and learn from their classmates.”

We should ask ourselves.....

• How are we engaging our “students in thinking critically about conducting better online research, using sources appropriately, and doing work that reflects their original thought?”

• “How do students define "originality" in their cultural moment--one that is always on, connected, and sharing (thanks to the web and mobile technology)? “

• “How do their interpretations differ from what educators consider original in the classroom context? Delving deeper, how do we go about teaching students how to be creative and to think critically when doing their own work?”

Research Ambit

Verify Originality of Scholarly & Professional Writing

- Researchers & Research Departments
- PhD & Masters Candidates
- Featuring ProQuest

GET STARTED

WriteCheck for Students
VERIFY ORIGINALITY
Plagiarism Detection & Prevention Technology
- Check written work for plagiarism and attribution
- World's largest comparison database of professional & scholarly work
- Easy to use, results in minutes

Authors & Researchers
BUY CREDITS

Organizations
GET A QUOTE

Researchers, Editors & Companies
TRUST ITHENTICATE
Protect your reputation
Avoid costly retractions
Prevent copyright infringement

How to Avoid Plagiarism
FREE PAPERS & REPORTS
Self-Plagiarism »
Pressure to Publish »
Costs of Research Misconduct »

More Papers & Resources »
References

• http://turnitin.com
• http://plagiarism.org